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1 Introduction

Advances in perturbation methods have accelerated the adoption of heterogeneous-agent
models.1 Using these advances, a growing literature has demonstrated that heterogene-
ity shapes macroeconomic processes like the transmission of monetary and fiscal policy.2

This literature has emphasized several characteristics of households that matter for macro
dynamics—for example, their wealth, portfolios, and marginal propensities to consume. Most
of these characteristics change significantly as households age.3 Yet, most existing work relies
on infinite-horizon models, where the age of an agent does not change the problem he faces.

A contributing factor to this modeling decision is computational complexity. While
most perturbation methods could readily accommodate meaningful life cycle dynamics by
treating age as just an additional state variable in the agent’s problem, this approach would
significantly increase their computational burden. Naively, augmenting a model with A
distinct ages without making any changes to its representation or solution algorithm would
multiply the size of its state space by a factor of A and its number of potential state-to-state
transitions by a factor of A2. Therefore, one could roughly expect the life cycle version of a
model to be at least A times as costly to use as its infinite horizon counterpart.

However, treating age as a generic state variable is inefficient. Age has various properties
that model representations and solution algorithms can exploit. First, its possible transitions
are limited. A 20-year-old cannot turn 38; he either turns 21 or dies. This implies that the
majority of transitions in the naive A2 augmentation can be ignored. It also means that all
the future information relevant to a 20-year-old at time t is contained in the value function
of a 21-year-old at time t+ 1, vt+1(21); he is unconcerned with vt+1(38). Second, in models
without explicit dynastic considerations, agents care only about events that will occur within
their lifetime. Therefore, shocks that happen too far in the future have no effect on their
actions. These ideas underpin the backward solution and forward simulation methods used
in the life cycle literature.

This paper formalizes these special properties of age as a state variable and provides
a practical guide to exploit them in the sequence-space Jacobian (SSJ) method of Auclert
et al. (2021a). The result is a method that can significantly outperform the naive estimate
of an A-fold increase in computational costs. We focus on computing Jacobians for life cycle
household models in isolation; these Jacobians can later be combined with other blocks to
form larger macroeconomic models following the original SSJ framework. In Table 1, we
compare the costs of calculating Jacobians for a simple infinite horizon household model
with those of applying our method to a 75-year life cycle analogue.4 While the number of

1For perturbation methods, see, for example, Reiter (2009), Boppart, Krusell, and Mitman (2018), Auclert
et al. (2021a), and Bhandari et al. (2023).

2See, for example, Kaplan, Moll, and Violante (2018), Auclert, Rognlie, and Straub (2018), Auclert
(2019), and Luetticke (2021).

3Studies like Doepke and Schneider (2006), Auclert et al. (2021b), Peterman and Sager (2022), Bardóczy
and Velásquez-Giraldo (2024), Beaudry, Cavallino, and Willems (2024), and Gruss et al. (2025) have demon-
strated the significance of these life cycle dynamics for several macroeconomic debates.

4The life cycle model is the one described in Section 6 and the infinite horizon model is based on the
parametrization of the first period of the life cycle model. Both models use the exact same within-period
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Table 1: Costs of Augmenting a Household Model with Life Cycle Dynamics

Step Inf. Horizon Life Cycle (75 Ages) Ratio (LC/IH)

No. of idiosyncratic states 357 26, 775 75

Computing time (Average across 100 runs), seconds
Steady state 0.0022 s 0.0007 s 0.32
Single in.-out. Jacobian (H = 300) 0.1214 s 0.8884 s 7.32

Peak memory use, megabytes
Single in.-out. Jacobian (H = 300) 50.06 MB 124.04 MB 2.48

Notes: The Life Cycle model that the table refers to is the one described in Section 6. The infinite horizon model simply takes

the parameters (income process, preferences) of the first period of the life cycle model; we set its survival probability to 0.96

per year to make the model stationary. We use exactly the same single-period solver for both models to make computing times

comparable. The steady state calculation of the life cycle model is faster because we use a non-iterative procedure to find it

(see Lemma 1). All the tests were performed on a laptop with an Intel(R) Core(TM) Ultra 7 155H processor at 3.80 GHz. For

Jacobians, the input is the interest rate and the output is consumption.

possible idiosyncratic state configurations that must be solved for grows by a factor of 75,
the time it takes to find a Jacobian of the model grows only by a factor of around 7. Peak
memory use, which can become a consideration for more complex models, grows only by a
factor of around 2.5.

We construct our algorithm using objects and methods that most implementations of
life cycle models already have, and we hope this will facilitate its adoption. The algorithm
requires only a function that, given a sequence of the aggregate inputs (for example, taxes,
interest rates, or wages) that an agent will face throughout his life {Xa}A−1

a=0 , returns the se-
quence of relevant policy functions evaluated on age-specific grids {ya}A−1

a=0 and the transition
matrices that describe the stochastic movement of agents through those grids conditional on
their survival, {La}A−1

a=0 .
5

We see two main groups of applications for the method we develop. First, the method
will facilitate the inclusion of life cycle dynamics in heterogeneous-agent macroeconomic
models. We believe this is valuable given the large body of studies that highlight age as a
driver of heterogeneity in key quantities like marginal propensities to consume and interest
rate exposures.6 Furthermore, as demonstrated in Auclert et al. (2021a,b), Boehl (2023),
and Gruss et al. (2025), sequence-space Jacobians can accelerate the calculation of nonlinear

solution and simulation code.
5These transition matrices will be readily available in studies that take a non-stochastic approach to

forward simulation. Young (2010) and Ocampo and Robinson (2023) compare this method with Monte
Carlo simulation.

6See, for example, Auclert (2019), Fagereng, Holm, and Natvik (2021), and Andersen et al. (2023).
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transition paths in heterogeneous-agent economies. Thus, we expect our method to facili-
tate explorations of regime changes in contexts where generational differences and life cycle
considerations matter. These contexts include studies of fiscal reforms and demographic
transitions.

Second, the method will benefit studies using life cycle models to answer counterfactual
questions involving partial equilibrium effects. For concreteness, imagine a microeconomic
study using an estimated model to evaluate the effect of counterfactual income taxes on
housing decisions over the life cycle. To account for the effects of endogenous movements in
house prices, the household block could be combined with an auxiliary housing supply sector
and a market-clearing condition. In this type of model, the Jacobians that we deliver can be
used to give a first-order approximation of the effect of transitory changes, or to accelerate
the numerical search of the transition path to new permanent regimes. Additionally, our
method produces “age-specific” Jacobians that can instantly deliver the response of different
cohorts of agents to changes in their environments, which can be of interest in this class of
applications.

The rest of this paper is organized as follows. Section 2 defines the class of life cycle
problems that we consider and represents it in the SSJ framework. Section 3 defines age-
specific sequence-space Jacobians and discusses their relationship with aggregate Jacobians.
Section 4 defines and describes age-specific “fake news” matrices and shows they are sufficient
to construct age-specific Jacobians. Section 5 provides our algorithm for computing age-
specific fake news matrices, relating it to a typical life cycle model implementation. Section
6 demonstrates our method, calculating age-specific and aggregate Jacobians for a life cycle
consumption-saving problem. Section 7 concludes.

2 Life Cycle Problems in Sequence Space

Background. The SSJ framework represents macroeconomic models as collections of blocks.
A block can represent, for example, all the households in the economy, firms, or a fiscal
authority. Blocks interact through aggregate variables that they either take as given (an
“input”) or that they produce (an “output”). For example, the fiscal authority can set the
tax rate, give it to the household block as an input, and the household block outputs aggre-
gate consumption and savings. Other blocks include equilibrium restrictions that aggregate
variables must satisfy; for example, market clearing and no-arbitrage conditions.

Since we are concerned with life cycle problems, we restrict our attention to heterogeneous-
agent blocks: those that represent collections of agents that can be in different idiosyncratic
states. The state space of agents in these blocks is discretized and represented with a grid.
Policy functions, value functions and distributions are vectors. The ith entry of a vector is
the value of the relevant function at the ith possible configuration of the idiosyncratic state,
or grid point. The representation of a block with inputs X and outputs Y is

vt =v(vt+1,Xt), Λt = Λ(vt+1,Xt), yt = y(vt+1,Xt)

Dt+1 =Λ′
tDt, Yt = y′

tDt,
(1)
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where vt is the value function, Dt is the distribution of agents over states, and yt is the
individual-level outcome of interest. Aggregate outputs are averages of individual outcomes.
The matrix Λt is the transition matrix describing the stochastic movement of agents through
states. Agents are forward-looking. The functions v(·, ·), Λ(·, ·), and y(·, ·) capture the depen-
dence on the continuation value vt+1 as well as on contemporaneous inputs Xt, embedding
Bellman’s principle of optimality.

Zooming out, the equations in Equation 1 define a function that, given an initial distri-
bution D0, maps sequences of X into sequences of Y,

f({Xt}∞t=0) = {Yt}∞t=0. (2)

Assumptions and representation of life cycle problems. We now characterize the
class of problems that we confront in this paper. A life cycle problem is a dynamic opti-
mization problem that includes a specific state variable we call “age” and denote with a.
We enumerate the assumptions that we make about the problem and the age variable and
derive some implications after each assumption.

1. Age has a finite domain. We denote its number of distinct possible values with A and
index them starting with 0, a ∈ {0, 1, 2, ..., A − 2, A − 1}. We partition the vectors in
equation 1 into age-specific sub-vectors as

v′
t = [v′

t (0) , ...,v
′
t (A− 1) ] ,

D′
t = [D′

t (0) , ...,D
′
t (A− 1) ] ,

y′
t = [y′

t (0) , ...,y
′
t (A− 1) ] .

(3)

This partition allows for every aggregate output to be decomposed additively into con-
tributions of each living cohort,

Yt =
A−1∑
a=0

yt(a)
′Dt(a).

2. From age a, an agent either survives and advances to age a+ 1 or dies and is replaced
by a newborn agent. The probability of these events can depend on age but must be
independent of the other state variables and of aggregate inputs. At age a, δa denotes
the probability of death and ��δa ≡ 1 − δa the probability of survival. Agents die with
certainty at age A− 1, δA−1 = 1.

3. Agents who die are replaced by newborns (a = 0). Newborns draw their initial states
(other than age) from a distribution that is fixed over time and independent of all other
variables in the model. We denote this distribution with η.
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The previous assumptions imply that we can partition the transition matrix Λt in Equa-
tion 1 as

Λt =


δ0 × 1η′ ��δ0Lt(0) 0 ... 0
δ1 × 1η′ 0 ��δ1Lt(1) ... 0

...
...

... ...
...

δA−2 × 1η′ 0 0 ... ��δA−2Lt(A− 2)
1η′ 0 0 ... 0

 . (4)

This equation implicitly defines Lt(a) as the transition matrix that describes the movement
of agents from idiosyncratic states in age a to idiosyncratic states in age a + 1 conditional
on their survival. We will henceforth refer to {Lt(a)}A−1

a=0 as conditional transition matrices.
No conditional transition matrix exists for the terminal age, but defining a placeholder
Lt(A − 1) = ∅ lightens our notation. The first block column of Equation 4 accounts for
dying agents, who draw their states from η.7

A more succinct way to express the law of motion for age-specific distributions implied
by equation 4 is

Dt+1(a) =

{(∑A−1
j=0 δj × 1′Dt(j)

)
η, a = 0

��δa−1Lt(a− 1)′Dt(a− 1), 0 < a ≤ A− 1.
(5)

4. The dynamic optimization problem that agents solve is such that there are age-specific
functions {v[a](·), y[a](·),L[a](·)}A−1

a=0 that satisfy

vt(a) = v[a] (vt+1 (a+ 1) ,Xt) ,

yt(a) = y[a] (vt+1 (a+ 1) ,Xt) ,

Lt(a) = L[a] (vt+1 (a+ 1) ,Xt)

(6)

for 0 ≤ a < A− 1, and vt(A− 1) = v[A− 1] (Xt) and yt(A− 1) = y[A− 1] (Xt).

This assumption characterizes the type of dynamic problem that our method allows.
Its main requirement is that the present actions, transitions, and utility of agents of age a
at time t are affected by information about the future only through the value function of
agents of age a+ 1 at time t+ 1. Most dynamically-consistent life cycle models that can be
written in Bellman form satisfy this restriction. Examples of models that do not satisfy this
restriction are those with time-inconsistent preferences (for example, Laibson 1997) or those
where agents care about the path of aggregate inputs X after their death.8

As in SSJ, we focus on shocks around a steady state: a setting where aggregate inputs
X have been constant for an indefinitely long time and are expected to remain so, and

7An extension of our method that allows for endogenous death probabilities and newborn distributions
that depend on the microeconomic state of the agents they replace is possible. The first block column of
Equation 4 becomes a series of time and age-varying matrices that describe the state of newborns as functions
of the state of the agents they replace. The effects of this generalization are discussed in Footnote 11.

8The last case could arise, for example, in dynastic models where a parent thinks about the macroeconomic
environment that will affect their children.
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where the distribution of agents over states has become time-invariant. The following lemma
characterizes the steady state distribution.

Lemma 1. (Steady State Distribution) The only possible steady state distribution of agents
across states in the life cycle model is recursively defined as

Dss(a) =


(∑A−1

j=0 ��∆
j
)−1

× η, a = 0

��δa−1Lss(a− 1)′Dss(a− 1), 0 < a ≤ A− 1,

where ��∆
0 = 1 and ��∆

a ≡
∏a−1

k=0 ��δ
k denote the probability that an agent will live at least to age

a. Proof in Appendix A.1.

A convenient implication of Lemma 1 is that the exact steady state distribution can be
computed with a finite number of operations: finding the newborn distribution and iterating
it to age A− 1.

Shocks to life cycle blocks. We now examine the effect of shocks to an input X on age-
specific value functions, distributions, policy functions, and transition matrices. The system
starts from a steady state with constant inputs Xss and, unexpectedly at time t = 0, there
is a change in the future sequence of expected and realized inputs {Xt}∞t=0.

To represent these shocks and their effects, we extend the SSJ notation to the age par-
titions. Steady state values of variables and vectors are marked with underscript ss. For
a given input X and shock size dx, we use Xs to denote a sequence of inputs that has the
value Xss + dx in its s-th entry and Xss in every other. Indexed vectors {vs

t ,D
s
t ,y

s
t ,Λ

s
t}∞t=0

represent the solution to the system in Equation 1 when the sequence of inputs is Xs.
We extend this notation to the partition of these objects into its age-specific constituents
{vs

t (a),D
s
t(a),y

s
t (a),Ls

t(a)}∞t=0 for 0 ≤ a ≤ A − 1.9 Finally, for any vector or variable
Z, we use dZ to denote its deviation from its steady state value, dZ ≡ Z − Zss and
dZ(a) ≡ Z(a)− Zss(a) for any 0 ≤ a ≤ A− 1.

The effects of single-period shocks on policy functions and transition matrices of life cycle
problems satisfy the three following properties.

Lemma 2 (Invariance to past shocks). For any 0 ≤ a ≤ A − 1, t ≥ 0 and s ≥ 0 such that
s < t, it is the case that

ys
t (a) = yss and Ls

t(a) = Lss.

Lemma 3 (Time-shift symmetry). For any 0 ≤ a ≤ A − 1, t ≥ 0 and s ≥ 0 it is the case
that

ys
t (a) = ys+k

t+k (a) and Ls
t(a) = Ls+k

t+k (a) ∀k ≥ 0.

Particularly, for t = 0,

ys
0(a) = ys+k

k (a) and Ls
0(a) = Ls+k

k (a) ∀k ≥ 0.
9For example, vs

t
′ = [vs

t
′(0), ...,vs

t
′(A− 1)].
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Lemma 4 (Truncated horizon). For any 0 ≤ a ≤ A−1 and (s, t) such that s−t > (A−1)−a,

yst (a) = yss(a) and Ls
t(a) = Lss(a).

Particularly, for t = 0, if s > (A− 1)− a,

ys0(a) = yss(a) and Ls
0(a) = Lss(a).

The proof of Lemmas 2, 3 and 4 is in Appendix A.2 and relies on writing out the recursion
of value functions, policy vectors, and transition matrices as

vs
t (a) = v[a](Xs

t) ◦ v[a+ 1](Xs
t+1) ◦ ... ◦ v[A− 1](Xs

t+A−1−a)

ys
t (a) = y[a](Xs

t) ◦ v[a+ 1](Xs
t+1) ◦ ... ◦ v[A− 1](Xs

t+A−1−a)

Ls
t(a) = L[a](Xs

t) ◦ v[a+ 1](Xs
t+1) ◦ ... ◦ v[A− 1](Xs

t+A−1−a).

The results follow from replacing Xs and its shifts into these expressions.
Lemma 2 says that policy functions and transition matrices are not affected by past

shocks conditional on agent’s current state. Lemma 3 says that, conditional on an agent’s
age, what matters for its policy function and transition matrix is the time remaining until a
shock arrives (s − t), not the specific calendar dates of s and t. Finally, lemma 4 says that
agents do not react to the announcement of shocks that will occur after their death. The
infinite horizon framework of Auclert et al. (2021a) shares the properties in Lemmas 2 and
3. The symmetries and invariances implied by these three properties underpin the efficient
calculation of sequence-space Jacobians.

3 Age-Specific Sequence-Space Jacobians

Consider the functional representation of a model block, f({Xt}∞t=0) = {Yt}∞t=0. The Jaco-
bian J is a matrix describing the effect of a perturbation to Xs on Yt,

Jt,s =
dft({Xj}∞j=0)

dXs

=
dYt

dXs

. (7)

These Jacobians are extremely useful objects. Not surprisingly, they are sufficient to solve for
impulse responses to first order. Auclert et al. (2021a) also demonstrate that the Jacobians
can be used to test local determinacy, evaluate the likelihood, and give good guesses for an
iterative solution of nonlinear transition paths.

The SSJ method is operational thanks to the “fake news algorithm” that exploits the
structure of Equation 1 to efficiently compute the Jacobians of heterogeneous agent blocks.
Our contribution is a version of this algorithm that exploits the special features of age as a
state variable to economize on the processing time and memory requirements in the case of
OLG models.
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Our algorithm decomposes the aggregate Jacobians of Equation 7 into the contributions
of different living cohorts to changes in aggregate outputs. Formally, this decomposition is

Jt,sdx = dYs
t = d

(
A−1∑
a=0

ys
t (a)

′Ds
t(a)

)

=
A−1∑
a=0

{dys
t (a)

′Dss(a) + yss(a)
′dDs

t(a)} ≡
A−1∑
a=0

Jt,s(a)dx.

(8)

Age-specific Jacobians are the elements of this decomposition. Jt,s measures the change in
output Y at time t caused by a shock to input X that is announced at time 0 and occurs at
time s. Jt,s(a) is the part of that change that is due to the cohort of agents that has age a
at time t.

Definition 1 (Age-Specific Sequence-Space Jacobians). For an output Y and input X of
interest, and for every age a ∈ {0, 1, ..., A − 1}, the age-specific sequence-space Jacobians
{J (a)}A−1

a=0 are matrices with entries such that

Jt,s(a)dx = dys
t (a)

′Dss(a) + yss(a)
′dDs

t(a).

for t ≥ 0 and s ≥ 0.

Age-specific sequence-space Jacobians have two immediate uses. First, since J =
∑A−1

a=0 J (a),
they can be used to construct the aggregate Jacobians of the heterogeneous-agent life cycle
block. Second, age-specific Jacobians can be used to trace the response of particular cohorts
to a shock over time. For example, the response of the cohort that had age a at time 0 to
a shock that occurs at time s and is announced at time 0 is {Jt,s(a + t)}A−1−a

t=0 . The t-th
element in the set is the cohort’s response at time t.

The rest of the paper describes an efficient algorithm to compute {J (a)}A−1
a=0 .

4 Age-Specific Fake News Matrices

Our method to find age-specific sequence-space Jacobians is an adaptation of the “fake news
algorithm” of Auclert et al. (2021a). As such, it requires age-specific analogues of many of
the objects defined in that paper. Among these objects, the most important are fake news
matrices, which measure the difference between the time t response to a time s shock, and
the time t− 1 response to a time s− 1 shock.

Definition 2 (Age-Specific Fake News Matrices). For an output Y and input X of interest,
and for every age a ∈ {0, 1, ..., A − 1}, the age-specific fake news matrices {F(a)}A−1

a=0 have
their entries defined as

Ft,s(a) =

{
Jt,s(a), If t = 0 or s = 0,

Jt,s(a)− Jt−1,s−1(a), Otherwise,

for t ≥ 0 and s ≥ 0.
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Two properties of age-specific fake news matrices follow from Definition 2. First, age-
specific Jacobians are partial sums of the diagonals of age-specific fake news matrices. For
any t ≥ 0, s ≥ 0, and a ∈ {0, 1, ..., A− 1},

Jt,s(a) =

min{t,s}∑
k=0

Ft−k,s−k(a). (9)

Second, because age-specific Jacobians add up to aggregate Jacobians, age-specific fake news
matrices also add up to aggregate fake news matrices:

F =
A−1∑
a=0

F(a), (10)

where F is defined as Ft,s = Jt,s − Jt−1,s−1.
It is clear, therefore, that if we had age-specific fake-news matrices {F(a)}A−1

a=0 , we would
be able to construct age-specific and aggregate Jacobians {J (a)}A−1

a=0 and J . Before present-
ing our method for calculating these age-specific fake news matrices, we characterize them
in terms of simpler objects.

4.1 Building Blocks of Age-Specific Fake News Matrices

The first objects that we define are age-specific expectation vectors Et(a), another special-
ization of an infinite-horizon object from Auclert et al. (2021a).

Definition 3 (Age-Specific Expectation Vectors). For 0 ≤ a, 0 ≤ t, and 0 ≤ a+ t ≤ A− 1,
the age-specific expectation vector Et(a) is

Et(a) =

{
yss(a), If t = 0,(∏a+t−1

k=a ��δkLss(k)
)
yss(a+ t) otherwise.

Expectation vectors trace the expected path of agents’ outcomes over time. The n-th
entry of Et(a) is the expected value that the output of an agent who is on the n-th gridpoint
of the age-a state space at time 0 will have in period t, when he reaches age a + t. These
expectations account for the probability that the agent will die and not make it to period t.

The other two types of object that we will use in building age-specific fake news matrices
capture the initial effect of the time 0 announcement of a shock scheduled to occur at
time s ≥ 0.10 Age-specific “policy shifts” capture the effect of the shock on agents’ policy
functions at time 0. Age-specific “distributional shifts” capture the effect of the shock on
the distribution of agents over states at time 1. These objects already fit our notation as
dys

0(a) and dDs
1(a), but they directly appear in fake news matrices and thus deserve a name

and definition.

10If s ≤ 1 these objects contain the effect of both the announcement and realization of the shock.
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Definition 4 (Age-Specific Policy Shifts and Distributional Shift). For age 0 ≤ a ≤ A− 1
and shock date s ≥ 0, the age-specific policy shift dys

0(a) and age-specific distributional shift
dDs

1(a) are
dys

0(a) = ys
0(a)− yss(a) and dDs

1(a) = Ds
1(a)−Dss(a).

The following lemma characterizes age-specific distributional shifts, showing that they
are null in many cases.

Lemma 5. For s ≥ 0 and 0 ≤ a ≤ A− 1,

dDs
1(a) =

{
��δa−1Ls

0(a− 1)′Dss(a− 1)−Dss(a), If 0 ≤ a− 1 ≤ A− 1− s.

0, otherwise.
(11)

Proof in Appendix A.4.

Agents that are represented in dDs
1(a) are of age a − 1 when the relevant shock is an-

nounced (t = 0). If s > (A − 1) − (a − 1), they will be dead by the time the shock occurs.
In that case, they do not react to the shock and we have dDs

1(a) = 0.

4.2 Structure of Fake News Matrices

The following theorem characterizes every entry of age-specific fake news matrices in terms
of expectation vectors, policy shifts and distributional shifts.

Theorem 1 (Structure of Age-Specific Fake News Matrices). For any 0 ≤ a ≤ A − 1,
age-specific Fake-News matrices F(a) from Definition 2 have the following structure:

• First row, t = 0:

F0,s(a) =

{
dys

0(a)
′Dss(a), If a ≤ A− 1− s,

0, Otherwise.

• Upper-left block outside the first row, 1 ≤ t ≤ A− 1 and 0 ≤ s ≤ A− 1:

Ft,s(a) =

{
Et−1(a− t+ 1)′dDs

1(a− t+ 1), If 0 ≤ a− t ≤ A− 1− s

0, Otherwise.

• Outside of upper-left block, t > A− 1 or s > A− 1:

Ft,s(a) = 0.

Proof in Appendix A.5.
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Each case of Theorem 1 has an intuitive interpretation. To that end, remember that
Ft,s(a) is linked to the incremental time t response from the cohort of age a to a shock
scheduled to occur at time s and announced at time 0. That cohort is of age a− t when the
shock is announced and will be of age a− t+s when the shock happens. The main condition
for nonzero elements in Theorem 1 is

0 ≤ a− t ≤ A− 1− s.

This condition requires that the cohort has been born when the shock is announced (0 ≤ a−t)
and that it is also alive when the shock arrives (a− t ≤ A− 1− s).11

The first row of F(a) captures the effect at time 0 of announcing shocks scheduled for
time s. Theorem 1 says that, since time-0 distributions are predetermined, contemporaneous
responses happen only through time-0 changes in policy functions dys

0(a). Additionally, there
is no reaction to shocks expected to arrive after agents’ terminal age (a+ s > A− 1).

The second case of Theorem 1 pertains to changes in aggregate outcomes after shocks
are announced (t > 1). The theorem says that, to a first order approximation, the difference
between response at time t to a shock that happens at time s, and the response at time t−1
to a shock that happens at time s − 1, Jt,s(a) − Jt−1,s−1(a), is that the (t, s) case has one
additional period of anticipatory effects. This additional period is time 0, when the relevant
cohort has age a− t. The announcement produces a distributional shift dDs

1(a− t+ 1) and
the effect of that shift on the output at time t is Et−1(a − t + 1)′dDs

1(a − t + 1). There
is no additional anticipation if agents had not been born at the time of the announcement
(a− t < 0), or if the shock arrives after their terminal age (a− t ≤ A− 1− s).

The last case of Theorem 1 says that all nonzero elements of age-specific fake news
matrices must be in their first A rows and first A columns. Entries after the Ath row pertain
responses at time t to shocks that were announced when none of the cohorts alive at time
t had been born. Hence, increasing t and s brings no additional anticipatory effects to
aggregate responses. Entries after the Ath column pertain responses to shocks scheduled to
occur after the death of all the cohorts that are alive at the time of the announcement. These
cohorts do not react to the shocks and thus generate no additional anticipatory effects.

5 Computing Age-Specific Fake News Matrices

This section explains how to compute age-specific fake news matrices {F(a)}A−1
a=0 using meth-

ods and routines that are commonly available in implementations of life cycle models. We
start by describing our assumptions about these common implementations and defining ad-
ditional objects that use them.

11The main effect of adopting a more flexible representation of death (one in which death probabilities and
the distribution of newborns are not exogenous and constant) is that nonzero terms start appearing in the
t > a regions of Fake News matrices. The reason is that “Fake news” shocks can affect agents that were not
alive at their announcement through endogenous movements in the distribution of newborns. Terms with
the form dDs

t (0), which currently disappear, start to matter. However, these terms require no additional
solutions of the life cycle model: they can be obtained using steady-state transitions to propagate elements
that our method already calculates.
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Implementation of life cycle models. Our starting point is a computational imple-
mentation of a life cycle model that is solved by backward induction. Aggregate variables
are taken as given. We build up from a microeconomic implementation that represents the
life of a single cohort and, therefore, has no meaningful distinction between time and age:
the cohort has age 0 at time 0, age 1 at time 1, and so on. This type of implementation
commonly has the following structure:

• There are age-specific grids that discretize the state-space of every age {Ga}A−1
a=0 .

12

• There are age-varying parameters that affect the agent’s problem, for example, an age-
profile of productivity or a sequence of tax rates. We separate the input with respect
to which we want to compute Jacobians, X, and write the sequence of age-varying
parameters as {ϑa,Xa}A−1

a=0 , where ϑ collects the rest of parameters.

• There are age-specific solvers {solvea(·)}A−1
a=0 which, given the solution of age a, find the

solution of age a− 1. To lighten the notation, we incorporate the auxiliary parameters
{ϑa} into the definition of these solvers and stop writing them. The “solution” of an
age comprises its policy function y(a), value function v(a), and transition matrix to
next period, conditional on survival L(a).

ya(a), va(a), La(a) = solvea (va+1 (a+ 1) ,Xa) .

The vectors ya(a) and va(a) are defined on grid Ga, and transition matrix La(a) has
dimensions |Ga| × |Ga+1|.

With this representation, we define two additional objects:

• Auxiliary functions that solve the dynamic problem up to an age a. These func-
tions, which we will denote with solve, take as input the continuation value function
va+1 (a+ 1) and parameters up to age a:

{yj(j), vj(j), Lj(j)}aj=0 = solvea

(
va+1 (a+ 1) , {Xj}aj=0

)
.

Each function solvea chains backward applications of single-period solvers {solvej}aj=0.

• The steady state solution is that obtained when the aggregate input is at its steady
state value X = Xss at every age

{yss(j), vss(j), Lss(j)}A−1
j=0 = solveA−1

(
{Xss}A−1

j=0

)
.

Since A− 1 is the terminal age, solveA−1 does not have a continuation value function
as input. The steady state distribution {Dss(a)}A−1

a=0 is defined in Lemma 1.

These objects are sufficient to calculate age-specific fake news matrices and sequence
space Jacobians.

12A reason why grids might be age-varying is that certain states might disappear after certain ages. For
example, income shocks to a household might be turned off after retirement.
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5.1 From life cycle solutions to building blocks

Theorem 1 expresses age-specific fake news matrices in terms of expectation vectors, distri-
butional shifts, and policy shifts. We now explain how to calculate these building blocks
for a given life cycle model using the steady state solution {yss(j), vss(j), Lss(j)}A−1

j=0 and

partial solvers {solvea(·)}A−1
a=0 that we just introduced.

Expectation vectors only depend on the steady state solution. From Definition 3, it
follows that we can calculate expectation vectors recursively as

Et(a) =

{
yss(a), If t = 0

��δaLss(a)Et−1(a+ 1), If 0 < t ≤ A− 1− a.
(12)

Now consider the distributional shifts and policy shifts that appear in Theorem 1 for any
given 0 ≤ s ≤ A− 1. For s = 0, they are {y0

0(j)}A−1
j=0 and {dD0

1(j)}A−1
j=1 . For s ≥ 1, they are

{y0
s(j)}A−1−s

j=0 and {dDs
1(j)}A−s

j=1 . What policy vectors y and conditional transition matrices
L would we need to produce these shifts? Visualizing them in tables where s increases with
rows and the counter j increases with columns, and crossing out the elements that we do
not need, we have13

y0
0(0) y0

0(1) ... y0
0(A− 2) y0

0(A− 1)
y1
0(0) y1

0(1) ... y1
0(A− 2) ✗

y2
0(0) y2

0(1) ... ✗ ✗
...

... ...
...

...

yA−2
0 (0) yA−2

0 (1) ... ✗ ✗

yA−1
0 (0) ✗ ... ✗ ✗

and

L00(0) L00(1) ... L00(A− 2)
L10(0) L10(1) ... L10(A− 2)
L20(0) L20(1) ... ✗

...
... ...

...

LA−2
0 (0) LA−2

0 (1) ... ✗

LA−1
0 (0) ✗ ... ✗

. (13)

The s-th row of these tables contains the time-0 response to the announcement of a shock
that takes place at time s ≥ 0. The j-th column contains the responses of agents aged j
at the announcement. Agents of age j > A − 1 − s will be past the terminal age when the
shock arrives and, thus, they do not respond.

Now consider sequences of aggregate inputs of length a that have the steady state value
Xss every period except the last (the a-th), where they have Xss + dx. These would be the
first a entries of Xa in the notation of Auclert et al. (2021a). Solving the life cycle model
up to age a with such sequences of aggregate inputs and assuming that aggregates revert to
steady state afterwards would yield{

ya
j (j), v

a
j (j), La

j (j)
}a
k=0

= solvea (vss (a+ 1) , {Xa
k}

a
k=0) . (14)

These are the policy functions, value functions, and transition matrices of agents that expect
a shock to X at age a that was announced at the time of their birth. We have used our
partial solver and the steady state solution to avoid solving for ages greater than a.

Concentrating on policy functions and transition matrices, Lemma 3 implies{
ya
j (j), La

j (j)
}a
j=0

=
{
ya−j
0 (j), La−j

0 (j)
}a
j=0

.

13Here we have used Lemma 5, which implies that to get dDs
1(j) we need Ls

0(j − 1).
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These are precisely the elements of the a-th “anti-diagonal” (bottom-left to top-right diago-
nals) of the tables in Equation 13. Therefore, given the steady state solution and expectation
vectors, we only have to evaluate each of the partial solvers {solvea(·)}A−1

a=0 once and to apply
Lemma 5 to get the remaining building blocks that we need for {F(a)}A−1

a=0 . Since partial
solver solvea(·) nests the evaluation of single-period solvers {solvej(·)}aj=0, this entails eval-
uating a total of A× (A+ 1)/2 single-period solvers.

The reduced number of single period solutions explains the performance of our method.
Return to the experiment in Table 1, which finds a 300-period Jacobian of an infinite horizon
household and compares its cost with those of finding the same Jacobian in an analogue
life cycle model with 75 possible ages. Applying the traditional SSJ method to the infinite
horizon model requiresH = 300 solutions of the single-period problem. Applying our method
to the life cycle model requires 75 × 76/2 = 2,850 single period solutions. Therefore, the
number of single-period problems that must be solved in the life cycle version of the model
grows only by a factor of 2,850/300 = 9.5, which is close to the speed ratio we report in
Table 1.

5.2 Algorithm

With the results from the previous subsection, one could first apply partial solvers to obtain
all the objects in Equation 13, then use Lemma 5 to get distributional shifts, and then
use Theorem 1 to construct age-specific fake news matrices. This approach could become
impractical for models of moderate size. The number of points in age-specific state spaces
can easily be in the thousands. This means that each of the policy vectors (y) and transition
matrices (L) in Equation 13 can have thousands and millions of elements, respectively.14

Therefore, storing and wrangling the A × (A + 1)/2 policy vectors and transition matrices
simultaneously can become cumbersome for moderate values of A and sizes of the age-specific
state space. For such cases, this section presents an algorithm that constructs age-specific
fake news matrices progressively, evaluating partial solvers and updating all the relevant
matrix entries before calling the next solver, so that all outputs do not need to be stored in
memory simultaneously.

Algorithm 1 presents the routine, which takes the steady state solution and expectation
vectors (calculated using equation 12) as its inputs and produces age-specific fake news
matrices for every age as its outputs. The algorithm initializes all age-specific fake news
matrices with zeros. After that, for every age 0 ≦ k ≤ A − 1, it solves the model up to
age k with inputs Xk in line 3, obtaining {Lk−l

0 (l),yk−l
0 (l)}kl=0. Lines 4 to 6 update the

first row elements of fake news matrices that use the policy shifts obtained in the partial
solution. Lines 7 to 12 update elements outside the first row of fake news matrices that use
distributional shifts generated by the transition matrices of the partial solution. The policy
vectors and transition matrices can be deleted from memory each time k is updated.15 After

14In practice, transition matrices are often sparse and could be stored using specialized representations.
15The algorithm could be even more efficient if Lk−l

0 (l) and yk−l
0 (l) were calculated one backward step

at a time. All the relevant entries of fake news matrices could be updated after each backward step, and
then Lk−l

0 (l) and yk−l
0 (l) could be deleted. We believe that the current exposition facilitates the use of the
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Algorithm 1 Computing age-specific Fake-News matrices for a single input and output

Input: S.S. Solution: {Lss(a),yss(a),Dss(a)}A−1
a=0 , Expectation Vectors {{Et(a)}at=0}

A−1

a=0

1: Initialize A matrices {F(a)}A−1
a=0 of dimension A× A with zeros

2: for 0 ≤ k ≤ A− 1 do

3: {Lk−l
0 (l),yk−l

0 (l)}kl=0 ← solvek

(
vss (k + 1) , {Xss + 1j=k × dx}kj=0

)
4: for 0 ≤ l ≤ k do

5: F0,k−l(l)← dyk−l
0 (l)′Dss(l)

6: end for

7: for 0 ≤ l ≤ min{k,A− 2} do
8: dDk−l

1 (l + 1)← ��δlLk−l
0 (l)′Dss(l)−Dss(l + 1)

9: for 1 ≤ m ≤ (A− 1)− l do

10: Fm,k−l(l +m)← Em−1(l + 1)′dDk−l
1 (l + 1)

11: end for

12: end for

13: end for

Output: Fake news matrices {F(a)}A−1
a=0

completing the previous steps, all the nonzero entries of all age-specific fake news matrices
{F(a)}A−1

a=0 will be filled; the following Lemma formalizes this claim.

Lemma 6. All the possible nonzero elements of matrices {F(a)}A−1
a=0 according to Theorem

1 are calculated by Algorithm 1. Also, all the entries of {F(a)}A−1
a=0 that are calculated in

Algorithm 1 are possible nonzero entries according to Theorem 1.
Proof in Appendix A.6

6 Demonstration

This section applies our method to a simple life cycle version of the household model with
idiosyncratic shocks and borrowing constraints that is standard in heterogeneous agent new
Keynesian models. The sole goal of the model is to provide concrete depictions of objects
such as age-specific fake news matrices and Jacobians, and to illustrate their interpretation.

6.1 Model Description

In our illustrative model, time advances in one-year increments and, since the microeconomic
definition of the problem does not distinguish between “time” and “age” we denote both

algorithm for models with existing implementations of partial solvers solve.
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with a. Households are born at the age of 26 (a = 0) and live up to a maximum age of 100
(a = 100− 26 = 74); there are A = 75 ages in total.

Each period, households receive income either from their work if they are 65 or younger,
or from a pension plan if they are older than 65. We use “age fixed-effects” {fa}74a=0 that
shape the average age profile of earnings. During their working lives, indexing households
with i, their income is

yi,a = exp{fa + zi,a} × wa, (15)

where zi,a is an idiosyncratic shock and wa is the economy-wide wage rate that prevails when
the household reaches age a. From age 66 onward, their income is

yi,a = exp{fa + zi,a} × d, (16)

where d is a parameter that controls the economy-wide level of pensions. We follow the
common practice of calculating individual pensions based on the value of the idiosyncratic
shock in the household’s last working period, zi,(65−26).

16 This amounts to setting zi,a = zi,a−1

for a ≥ 40. Both labor earnings and pensions are taxed at a rate τ .
Households get utility from their consumption only, through an isoelastic function u(c) =

c1−ρ/(1− ρ) and discounting the future with an annual factor β. They decide how much of
their accumulated assets to consume each period. They can save to protect their consumption
against fluctuations in their earnings as they age and receive shocks. We denote their level
of savings at the end of age a with bi,a. Their savings earn a return factor Ra and they can
never borrow (bi,a ≥ 0).

In sum, the recursive representation of the problem faced by households before the ter-
minal age (a ≤ 73) is

Va(zi,a, bi,a−1) =max
ci,a

c1−ρ
i,a

1− ρ
+ β��δaE [Va+1 (zi,a+1, bi,a)]

Subject to:

bi,a =Ra × bi,a−1 + (1− τ)yi,a − ci,a,

bi,a ≥0.

where yi,a is defined in Equations 15 and 16, and zi,a+1 follows a first order discrete Markov
process zi,a+1 ∼ Πa+1(zi,a).

17 We represent these Markov processes with age-specific vectors
of possible values and transition matrices. After age 65, since zi,a+1 = zi,a, grids become
constant and transitions become identity matrices for a ≥ (65− 26).

In the notation introduced in Section 5, the various elements of our model would be:

• Grids for each age {Ga}A−1
a=0 would comprise every possible combination of the (dis-

cretized) values of bi,a−1 and zi,a.

16See, for example, Carroll (1997) and Kaplan and Violante (2014).
17In the terminal age, households consume all their resources and receive no utility from future events

V74(zi,74, bi,73) = (R74 × bi,73 + (1− τ) yi,74)
1−ρ

/(1− ρ).
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• Age-varying parameters that are not aggregate inputs {ϑa}A−1
a=0 include the age fixed

effects of earnings fa, and the transition matrices and possible values of income shocks
Πa+1(·). While constant in our example, elements like the discount factor β could be
made age-dependent and would, in that case, be included in ϑ.

• The aggregate inputs that we will use in our example are the interest rate and wage
rate, {Xa}A−1

a=0 = {Ra, wa}A−1
a=0 . Other clear candidates would be the level of pensions

and the tax rate on earnings.

• v(a) are vectors with all the properties of the value function that are necessary for the
solution of the model, evaluated on every point of Ga. This particular model can be
solved with Carroll’s (2006) method of endogenous gridpoints (EGM), which requires
only the derivative of the value function with respect to assets,

∂

∂ bi,a−1

Va(zi,a, bi,a−1) = Ra × [c∗a (zi,a, bi,a−1)]
−ρ .

where c∗a(·) is the optimal consumption function for age a. More complex models can
require tracking more properties of the value function.18

• y(a) are vectors evaluating outcomes of interest in every point of Ga. Consumption
c∗a (zi,a, bi,a−1), “cash-in-hand” m(zi,a, bi,a−1) ≡ Ra × bi,a−1 + (1 − τ)yi,a, and savings
m(zi,a, bi,a−1)− c∗a (zi,a, bi,a−1) are examples.

• Transition matrices L(a) contain the probability that a household will transit from state
(zi,a, bi,a−1) to state (zi,a+1, bi,a) conditional on its survival, for every pair in Ga × Ga+1.

The solution method for this model, incorporating auxiliary parameters into the function
definition, is y(a), v(a), L(a) = solvea (v (a+ 1) , {Ra, wa}). Practically, the function has
four steps. First, it applies EGM to find optimal consumption c∗a on a grid that does not
match Ga. Second, it interpolates consumption onto Ga. Third, it uses on-grid consumption
to evaluate the marginal value function and any relevant outcome points needed to construct
v(a) and y(a). Fourth, it uses on-grid consumption to find on-grid savings and uses the
lottery/histogram method of Young (2010) and the income process to find the transition
probabilities in L(a).

Table 2 presents the model’s calibration. We normalize the model by the average de-
terministic component of income, ȳ ≡ (A − 1)−1 ×

∑A−1
a=0 efa . For assets bi,a, we use a

doubly-nested exponential grid with 50 points that goes from 10−4 to 500 times ȳ. We add
bi,a = 0 as the 51st gridpoint and use the same grid for every age. Productivity zi,a follows
an autoregressive process in working years, discretized using 7 points. In total, our state

18For example solution methods for discrete-continuous problems can require both the level and derivative
of the value function (see, for example, Iskhakov et al. 2017; Dobrescu and Shanker 2024)

19We use cross-sectional probabilities for the year 2004.
20We regress income on a 5th degree polynomial of age and use the fitted values. Income is the sum of

wages and earnings, and pension and Social Security payments.
21We use the Rouwenhorst method. Annual persistence is 0.95 and the shocks’ standard deviation is 0.2.

We use 7 points.
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Table 2: Calibration of Illustrative Model

Object Notation Value / Source / Description

Relative risk aversion ρ 2.0
Time discount factor β 0.98
Death probabilities {δa}A−1

a=0 SSA Life tables19

Life cycle income intercepts {fa}A−1
a=0 Survey of Consumer Finances, 201920

Income shock distribution Π(·) Discretized AR(1)21

Interest factor Rss 1.02
Tax rate τ 0.3
Wage rate wss Normalized to 1.0
Retirement benefits d Normalized to 1.0

space grids Ga have 51 × 7 = 357 points for every age. For the distribution of newborns
over states, η, we assume households enter the model without assets and draw their income
shocks from the stationary distribution of the shock process.

6.2 Solution, Fake News Matrices, and Jacobians

Figure 1 depicts the steady state distribution of the model. The left panel shows its de-
mographic structure. The mass of agents declines monotonically with age. The right panel
shows the average consumption, post-tax income, and assets among households of every
given age. The age profiles reproduce the main features of Modigliani’s (1986) life cycle
hypothesis of saving. Households save in their peak-earning years anticipating the decline in
their income, and they deplete their savings during retirement. They achieve a consumption
age profile that is smoother than that of income. In reality, many old households do not
deplete their savings (De Nardi, French, and Jones 2010), but our illustrative model lacks
the ingredients necessary to reproduce this fact.

We apply Algorithm 1 to our model and obtain age-specific fake news matrices {F(a)}A−1
a=0

for the interest rate and wage rate as inputs and consumption as the sole output. The time
and memory costs are reported in Table 1. Given the steady state solution, it takes on
average 0.89 seconds to find the expectation vectors, fake news matrices, and Jacobians of
a single input-output pair and a horizon of T = 300 periods.22 Runtimes depend, among
other things, on details of the implementation of single-period solvers (solvea). Therefore,
we compare these runtimes with the standard fake news algorithm applied to an infinite-
horizon model that uses the exact same one-period solver, grids, and stochastic processes
as our life cycle model—it just removes age variation. Table 1 also reports the costs of the

22The time was averaged over 100 test runs. Tests were performed in a laptop with an Intel(R) Core(TM)
Ultra 7 155H processor at 3.80 GHz. The input is the interest rate and the output is consumption.
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of agents is 1.0. The right panel depicts the mean of various outcomes conditional on agents’ age.

Figure 1: Steady State Age Structure and Life Cycle Profiles

infinite horizon model. Given the steady state solution, it takes on average 0.12 seconds to
obtain the aggregate 300-period sequence-space Jacobian for this model. In this simple test,
our method performs much better than a naive benchmark of multiplying the infinite-horizon
runtime by the A = 75 possible ages we add: runtimes increase by a factor closer to 7.3.

We first depict age-specific fake news matrices. The characterization of these matrices in
Theorem 1 specifies 0 ≤ a− t ≤ A− 1− s as a necessary condition for Ft,s(a) ̸= 0. Figure 2
depicts this condition by plotting the nonzero elements of age-specific fake news matrices for
the response of consumption to the interest factor R. The condition configures trapezoidal
nonzero regions that become larger as a increases. Zeros may exist in these regions, as the
condition is necessary but not sufficient. This may happen, for example, with changes in
parameters that do not affect households of all ages; for example, a working household does
not react to a change in wages scheduled to happen after he has retired.

We use Equation 9 to obtain age-specific Jacobians and then Equation 8 to obtain aggre-
gate Jacobians. Figure 3 depicts examples of their entries. Panel a) presents the dynamic
responses of consumption to a 1 percentage point increase in the interest rate by 30-year-olds,
55-year-olds, and in the aggregate. Panel b) presents the dynamic responses of consumption
to a 10 percent increase in the wage rate by 55-year-olds, 80-year-olds, and in the aggregate.

Aggregate Jacobians have their intuitive usual shapes. When households expect a future
increase in the interest rate, they reduce their consumption to take advantage of greater re-
turns and, after the shock happens, they slowly consume their excess savings. The aggregate
response to wage increases combines the protracted reaction of households with savings that
smooth the shock intertemporally, with that of hand-to-mouth agents who simply consume
the whole increase when it arrives.

Age-specific Jacobians can deviate considerably from these known shapes, differing qual-
itatively from aggregate Jacobians, as Figure 3 shows. The differences in their shape are
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Figure 2: Nonzero Elements of Age-Specific Fake-News Matrices Ft,s(a)

illustrative of their interpretation and we explore them in turn.
First, we highlight the responses of 30-year-olds to interest rate increases, depicted in the

leftmost panel of Figure 3, Panel a). These responses feature increased savings in anticipation
to interest rate increments, but no noticeable increase in consumption after their occurrence.
The reason behind this apparent mismatch is that the group of agents that configure the
response captured in {Jt,s[a]}∞t=0 is different for every t—it is the age and not the cohort that
is kept constant as time advances. Therefore, it would be wrong to conclude that the agents
represented in the s = 20 line have accumulated an unusual level of savings by t ≥ 20 just
because the line is negative in t < 20. Each point on that line represents a different group
of agents and, in fact, for t large enough, the relevant agents had not been born at the time
of the shock or its announcement, so their response has to be zero.

Another set of illustrative responses are those of the consumption of 80-year-olds to wage
increases, which are depicted in the middle panel of Figure 3, Panel b). The responses to
shocks occurring at s = 0 and s = 20 are initially null, but as t increases they have a
discontinuous jump that makes them positive. This shows it would be wrong to conclude
that, since 80-year-olds are retired and receive no wages, these Jacobians must be zero.
Instead, these Jacobians capture the responses of agents who are 80 years old at time t and,
for t sufficiently larger than s, these agents would have been in the job market at the time
of the wage increase and benefited from it. Therefore, the discontinuity represents the point
at which 80− (t− s)—the age of these agents at the time of the shock—starts falling below
the age of retirement. After this point, 80-year-olds have a higher consumption due to their
higher working-age earnings.

These characteristics of age-specific Jacobians highlight a compromise that we strike in
capturing the response of age groups instead of cohorts. There is always the same set of
age groups in the economy, while cohorts instead exit the model completely after their last
member dies. Splitting responses by ages and not cohorts ensures that one can, for example,
calculate the aggregate Jacobian by summing up age-specific Jacobians, with a fixed set
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Figure 3: Age-Specific and Aggregate Jacobians of Consumption
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Figure 4: Consumption Response of Different Cohorts to a 1 p.p. Increase in R.

of ages. The downside of this decision is that the interpretation and visualization of age
Jacobians is muddled by the fact that they capture a different group of agents every period.

However, we can easily construct the dynamic response of any given cohort using age-
specific Jacobians. As mentioned in Section 3, the response to a time-s shock announced at
time 0 from the cohort that has age a at time 0 is {Jt,s(a+ t)}A−1−a

t=0 . Figure 4 presents the
dynamic response of different cohorts to increases in the interest rate R. Cohorts are labeled
using their age at time 0. Tracking consistent groups of agents over time, these responses
are easier to interpret and more similar to their aggregate counterparts. Anticipated interest
rate increases lead agents to save more until the shock happens, and to consume their extra
savings thereafter. Agents that do not anticipate being alive when the shock happens are
the exception. For example, the figure shows that “Cohort 80”—those who are 80 years old
at time 0—do not respond to shocks that will happen at s = 40, because by that time they
will have passed the terminal age (100).

7 Concluding Remarks

We have two main goals with the development of this paper. First, we want the deriva-
tions and algorithm that we put forth to be an asset for the growing literature that uses
models with overlapping generations of heterogeneous agents to tackle what we believe to
be fundamental macroeconomic questions (see, for example, Auclert et al. 2021b; Platzer
and Peruffo 2022; Gruss et al. 2025). We hope this paper will accelerate the development
of existing models and lower the technical barriers for the creation of new ones. Second, we
want this paper to serve as a bridge between areas of the microeconomic literature that use
life cycle models (for example, labor economics and household finance) and the expanding
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sequence-space framework for macroeconomic modeling. Beyond the dynamic equilibrium
analyses that this framework facilitates, there have been further advances on, for exam-
ple, incorporating imperfect expectations (Auclert, Rognlie, and Straub 2020; Bardóczy and
Guerreiro 2024) and studying optimal policy (Davila and Schaab 2025; Auclert et al. 2024).
The literature around this framework has prioritized modularity and interoperability, often
taking the sequenc-space Jacobians of a “block” as a starting point. Hence, we hope that
researchers will be able to use our method to calculate Jacobians of their life cycle models
and use them as blocks to leverage this growing set of tools.

Many technical advances not mentioned so far are available to lower the computational
burden of the class of models that we consider in this paper. In particular, most of the
techniques that accelerate the solution of the microeconomic life cycle problem or make
its representation more efficient directly apply to our setup. A few examples are: using
specialized sparse representations for transition matrices, using sparse grids to represent
age-specific state spaces (as in Brumm and Scheidegger 2017), or modeling decisions as
sequences of stages (as in Bardóczy 2022; Sun 2023). The results developed in this paper
can also be adapted to different or broader classes of models by altering our assumptions.
We have provided explicit statements of these assumptions and the proofs behind our results
to facilitate this process.
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Bardóczy, Bence and Joao Guerreiro (2024). Unemployment Insurance in Macroeconomic

Stabilization with Imperfect Expectations. Pre-published.
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A Proofs

A.1 Proof of Lemma 1

Proof. Let µt(a) ≡ 1′Dt(a), denote the total mass of agents of a given age at time t. Since
Dt is a probability distribution, it must always be the case that

1 =

(
A−1∑
a=0

µt(a)

)
. (17)

Also, pre-multiplying Equation 5 by 1′, we get

µt(a) =

{∑A−1
a=0 δa × µt−1(a), a = 0

��δa−1µt−1(a− 1), 0 < a ≤ A− 1.
(18)

This equation implies that µt(a) = µt−a(0)×��∆
a. Replacing this into Equation 17, we have

1 =

(
A−1∑
a=0

µt−a(0)×��∆
a

)
.

Therefore, any steady state distribution of the model must satisfy µss(0) =
(∑A−1

a=0 ��∆
a
)−1

.

Now consider a steady state version of Equation 5 for a = 0,

Dss(a) =

(
A−1∑
a=0

δa × µss(a)

)
η =

(
A−1∑
a=0

δa × µss(0)×��∆
a

)
η

= µss(0)×

(
A−1∑
a=0

δa ×��∆
a

)
︸ ︷︷ ︸

=1

η = µss(0)× η =

(
A−1∑
a=0

��∆
a

)−1

× η.

Plugging this initial condition into the law of motion in Equation 5 gives the result.

A.2 Proof of Lemmas 2, 3 and 4

Proof. Apply the recursive definitions in Equation 6 until the terminal age to arrive at

vs
t (a) = v[a]

(
vs
t+1 (a+ 1) ,Xs

t

)
= v[a]

(
v[a+ 1]

(
vs
t+2 (a+ 2) ,Xs

t+1

)
,Xs

t

)
≡ v[a](Xs

t) ◦ v[a+ 1](Xs
t+1) ◦ vs

t+2 (a+ 2)

...

= v[a](Xs
t) ◦ v[a+ 1](Xs

t+1) ◦ ... ◦ v[A− 1](Xs
t+A−1−a)

(19)
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and, likewise,

ys
t (a) = y[a](Xs

t) ◦ v[a+ 1](Xs
t+1) ◦ ... ◦ v[A− 1](Xs

t+A−1−a)

Ls
t(a) = L[a](Xs

t) ◦ v[a+ 1](Xs
t+1) ◦ ... ◦ v[A− 1](Xs

t+A−1−a).
(20)

Now remember that Xs is a series with the value of Xss + dx in its s-th entry and Xss

in every other. That structure has the following implications:

• If s < t or s− t > A− 1− a, all the entries of Xs that appear in Equation 20 are Xss.
Therefore,

ys
t (a) = y[a](Xss) ◦ v[a+ 1](Xss) ◦ ... ◦ v[A− 1](Xss) = yss(a)

Ls
t(a) = L[a](Xss) ◦ v[a+ 1](Xss) ◦ ... ◦ v[A− 1](Xss) = Lss(a).

(21)

This proves Lemmas 2 and 4.

• For any t ≥ 0, s ≥ 0 and k ≥ 0, Xs
t = Xs+k

t+k (its value depends only on whether the
subscript is equal to the superscript). Therefore,

ys+k
t+k (a) = y[a](Xs+k

t+k ) ◦ v[a+ 1](Xs+k
t+1+k) ◦ ... ◦ v[A− 1](Xs+k

t+A−1−a+k)

= y[a](Xs
t) ◦ v[a+ 1](Xs

t+1) ◦ ... ◦ v[A− 1](Xs
t+A−1−a) = ys

t .

and

Ls+k
t+k (a) = L[a](X

s+k
t+k ) ◦ v[a+ 1](Xs+k

t+1+k) ◦ ... ◦ v[A− 1](Xs+k
t+A−1−a+k)

= L[a](Xs
t) ◦ v[a+ 1](Xs

t+1) ◦ ... ◦ v[A− 1](Xs
t+A−1−a) = Ls

t .

This proves Lemma 3.

A.3 Additional properties of distributions

The following two properties will be used in the proofs that follow.

Lemma 7 (Shocks do not change initial distributions). For any s ≥ 0 and 0 ≤ a ≤ A− 1,
Ds

0(a) = Dss(a).

Proof. Applying Equation 5 to period t = 0 and noting that we are assuming that the system
starts from steady state so that D−1(a) = Dss(a) and L−1(a) = Lss(a) for any a, we have

D0(a) =

{(∑A−1
j=0 δj × 1′Dss(j)

)
η = Dss(0), a = 0

��δa−1Lss(a− 1)′Dss(a− 1) = Dss(a), 0 < a ≤ A− 1.

Lemma 8 (Shocks do not change newborn distribution). For any t ≥ 0 and s ≥ 0, Ds
t(0) =

Dss(0).
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Proof. The rows of any valid transition matrix must sum to 1. Therefore, L×1 = 1 and this
implies that Equation 18 holds even when there are shocks that change transition matrices.

Lemma 7 implies that µs
0(a) = µss(a) for any a. Then, applying Equation 18 to time

t = 1, we have

µ1(a) =

{∑A−1
j=0 δj × µss(j) = µss(0), a = 0

��δa−1µss(a− 1) = µss(a), 0 < a ≤ A− 1.

Thus µs
1(a) = µss(a).

We can keep going period by period to conclude that

µs
t(a) = µss(a) ∀t ≥ 0, s ≥ 0, 0 ≤ a ≤ A− 1.

Therefore, replacing this result into the law of motion for the newborn distribution (Equation
5),

Ds
j+1(0) =

(
A−1∑
a=0

δaµs
j(a)

)
η =

(
A−1∑
a=0

δaµss(a)

)
η = Dss(0) ∀j.

A.4 Proof of Lemma 5

Proof. We know that

Ds
1(a) =

{
Dss(0), If a = 0,

��δa−1Ls
0(a− 1)′Dss(a− 1), If 1 ≤ a ≤ A− 1.

The distribution of newborns never changes (Lemma 8). For a ≥ 1, the distribution of agents
at time 1 is the steady state distribution at time 0 (when the shock was announced) rolled
forward by the Ls

0(a− 1) transition matrix that accounts for the response to the shock, and
adjusted for survival.

Subtracting Dss(a),

dDs
1(a) =

{
0, If a = 0,

��δa−1 (Ls
0(a− 1)− Lss(a− 1))′Dss(a− 1), If 1 ≤ a ≤ A− 1.

(22)

Finally, we know from Lemma 4 that Ls
0(a− 1) = Lss(a− 1) if (a− 1)+ s > A− 1, which

simplifies to a > A−s. Replacing these elements and ranges into Equation 22 yields Lemma
5.
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A.5 Proof of Theorem 1

Theorem 1 is a combination of results describing different sections of age-specific fake news
matrices. We first establish these results.

First row.

Lemma 9. For t = 0, s ≥ 0, and 0 ≤ a ≤ A− 1,

F0,s(a) = J0,s(a) dx =

{
dys

0(a)
′Dss(a), If s ≤ A− 1− a,

0, Otherwise.

Proof. Note that, for 0 ≤ s,

J0,s(a)dx = (ys
0(a)

′Ds
0(a)) = dys

0(a)
′Dss(a)

because dDs
0(a) = 0 given that D0 is fixed at the time of the shock. Furthermore, Lemma 4

implies dys
0(a) = 0 for s > A− 1− a. Therefore,

J0,s(a) =

{
dys

0(a)
′Dss(a), If s ≤ A− 1− a,

0, Otherwise.

First column.

Lemma 10. For t ≥ 1, s = 0, and 0 ≤ a ≤ A− 1

Ft,0(a) = Jt,0(a) dx =

{
Et−1(a− t+ 1)′dD0

1(a− t+ 1) If 0 ≤ a− t,

0 Otherwise.

Proof. Consider

Jt,0(a)dx = d(y0
t (a)

′D0
t (a))

= dy0
t (a)

′Dss(a) + yss(a)
′dD0

t (a)

For t > a both dy0
t (a) and dD0

t (a) are zero because the relevant cohort had not been born
at the time of the shock’s occurrence.

Now, for any 0 < t ≤ a and 0 ≤ a ≤ A− 1, Lemma 2 implies dy0
t (a) = 0 and, therefore

Jt,0(a)dx = yss(a)
′dD0

t (a).
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For t = 1, the last line is E0(a)′D0
1(a) and we are done. For t > 1, we continue expanding,

Jt,0(a)dx = yss(a)
′dD0

t (a)

= yss(a)
′d(��δa−1L0

t−1(a− 1)′D0
t−1(a− 1))

= yss(a)
′d(��δa−1Lss(a− 1)′D0

t−1(a− 1))

= yss(a)
′
��δa−1Lss(a− 1)′dD0

t−1(a− 1)

= yss(a)
′
��δa−1Lss(a− 1)′��δa−2Lss(a− 2)′dD0

t−2(a− 2)

...

= yss(a)
′
��δa−1Lss(a− 1)′...��δa−(t−1)Lss(a− (t− 1))′dD0

1(a− (t− 1))

= Et−1(a− t+ 1)′dD0
1(a− t+ 1).

Elements outside the first row and column.

Lemma 11. For t ≥ 1, s ≥ 1, 0 ≤ a ≤ A− 1

Ft,s(a) ≡ Jt,s(a)− Jt−1,s−1(a) =

{
Et−1(a− t+ 1)′dDs

1(a− t+ 1) If 0 ≤ a− t,

0, Otherwise.
(23)

Proof. Note that, for s ≥ 1 and t ≥ 1,

Ft,s(a)dx = dYs
t (a)− dYs−1

t−1 (a)

= (dys
t (a)− dys−1

t−1 (a))︸ ︷︷ ︸
0

′Dss(a) + yss(a)
′(dDs

t(a)− dDs−1
t−1(a))

= yss(a)
′(dDs

t(a)− dDs−1
t−1(a)),

(24)

where the second equality is due to Lemma 3.
Now consider the following cases for dDs

t(a)− dDs−1
t−1(a) = Ds

t(a)−Ds−1
t−1(a):

• If a = 0: Ds
t(a)−Ds−1

t−1(a) = 0 due to Lemma 8.

• If a > 0: note that

dDs
t(a) =d

(
��δa−1Ls

t−1(a− 1)′Ds
t−1(a− 1)

)
=��δa−1dLs

t−1(a− 1)′Dss(a− 1)+

��δa−1Lss(a− 1)′dDs
t−1(a− 1).

So that

dDs
t(a)− dDs−1

t−1(a) =��δa−1(dLs
t−1(a− 1)− dLs−1

t−2(a− 1)︸ ︷︷ ︸
=0

)′Dss(a− 1)+

��δa−1Lss(a− 1)′(dDs
t−1(a− 1)− dDs−1

t−2(a− 1))

=��δa−1Lss(a− 1)′(dDs
t−1(a− 1)− dDs−1

t−2(a− 1)).

(25)

We can apply Equation 25 to itself recursively. The end of the recursion will depend
on the relationship between a and t.
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– If t > a, the recursion proceeds as

dDs
t(a)− dDs−1

t−1(a) =��δa−1Lss(a− 1)′(dDs
t−1(a− 1)− dDs−1

t−2(a− 1))

=��δa−1Lss(a− 1)′��δa−2Lss(a− 2)′

(dDs
t−2(a− 2)− dDs−1

t−3(a− 2))

...

=��δa−1Lss(a− 1)′...��δ0Lss(0)
′

(dDs
t−a(0)− dDs−1

t−a−1(0))︸ ︷︷ ︸
=0

= 0.

The last equality follows from Lemma 8.

– If t ≥ a, the recursion proceeds as

dDs
t(a)− dDs−1

t−1(a) =��δa−1Lss(a− 1)′(dDs
t−1(a− 1)− dDs−1

t−2(a− 1))

=��δa−1Lss(a− 1)′��δa−2Lss(a− 2)′

(dDs
t−2(a− 2)− dDs−1

t−3(a− 2))

...

=��δa−1Lss(a− 1)′...��δa−(t−1)Lss(a− (t− 1))′

(dDs
1(a− (t− 1))− dDs−1

0 (a− (t− 1))︸ ︷︷ ︸
=0

)

=��δa−1Lss(a− 1)′...��δa−(t−1)Lss(a− (t− 1))′

dDs
1(a− (t− 1))

=

(
t−1∏
k=1

��δa−kLss(a− k)′

)
dDs

1(a− (t− 1))

=Et−1(a− (t− 1))′dDs
1(a− (t− 1)).

In the derivation, dDs−1
0 (a− (t− 1)) = 0 due to Lemma 7.

Plugging the different cases for dDs
t(a)− dDs−1

t−1(a) into Equation 24 yields Lemma 11.

Proof of Theorem 1

Proof. The first case in the Lemma, t = 0, is a re-statement of Lemma 9.
The second case in the Lemma, 1 ≤ t ≤ A− 1 and 0 ≤ s ≤ A− 1, combines Lemmas 10,

11, and 5.

• If s = 0, then a − t ≤ A − 1 − s will always be true and, eliminating this restriction,
the case becomes a re-statement of Lemma 10.
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• If s ≥ 1 instead, then Lemma 11 applies. From Lemma 5 we know that dDs
1(a−t+1) ̸= 0

only if 0 ≤ (a− t + 1)− 1 ≤ A− 1− s. Adding this condition to Lemma 11, we have
that Ft,s(a) = Et−1(a− t+ 1)′dDs

1(a− t+ 1) can differ from zero only if

0 ≤ a− t ∧ 0 ≤ (a− t+ 1)− 1 ∧ (a− t+ 1)− 1 ≤ A− 1− s.

This expression reduces to 0 ≤ a− t ≤ A− 1− s, the condition in the case.

The third case of the Lemma has two parts. First, Lemmas 10 and 11 imply Ft,s(a) = 0
for a < t and any s. This implies Ft,s(a) = 0 for t ≥ A and any (a, s) pair. Second, Lemma
5 implies that dDs

1(a) = 0 for any s ≥ A and we also know dys
0(a) for any s > A−1−a from

Lemma 4. Applying these facts to Lemmas 9 and 11, we know that Ft,s(a) = 0 for s ≥ A
and any (a, t) pair.

A.6 Proof of Lemma 6

A.6.1 Proof that all nonzero elements are computed by the algorithm

Proof. Given 0 ≤ a ≤ A− 1, 0 ≤ t ≤ A− 1 and 0 ≤ s ≤ A− 1, consider the possible cases
for a nonzero Ft,s(a) according to Theorem 1:

• If t = 0, then it must be the case that a ≤ A− 1− s, which is s+a ≤ A− 1. Algorithm
1 finds F0,s(a) on line 5, when l = a and k = s + a. Line 5 is reached under these
conditions because

– The condition on line 4 is satisfied since

0 ≤ l = a ≤ k = s+ a.

– The condition on line 2 is satisfied since 0 ≤ k = s+ a ≤ A− 1.

• If t ≥ 1, then it must be the case that 0 ≤ a− t ≤ A− 1− s. Algorithm 1 finds Ft,s(a)
on line 10, when m = t, l = a − t, and k = s + a − t. Line 10 is reached under these
conditions because

– The condition on line 9 is satisfied since 1 ≤ t = m and

m = t ≤ (A− 1)− (a− t) = (A− 1)− l

since t ≤ (A− 1)− (a− t)↔ a ≤ (A− 1) which is true by the definition of a.

– The condition in line 7 is satisfied. First, l = a− t ≤ (A− 1)− 1 = A− 2 because
a ≤ A− 1 and t ≥ 1. It is also the case that l = a− t ≤ s+ a− t = k because we
assumed s ≥ 0. Finally, 0 ≤ a− t = l by assumption of the current case.

– The condition in line 2 is satisfied. First, 0 ≤ s + (a − t) = k because s ≥ 0 and
a − t ≥ 0. Second, k = s + (a − t) ≤ A − 1 ↔ a − t ≤ A − 1 − s, which is an
assumption of the current case.
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A.6.2 Proof that all the elements that the algorithm computes are possible
nonzeros

Proof. Algorithm 1 assigns entries to fake news matrices in lines 5 and 10. Both cases
correspond to elements that Theorem 1 flags as potential nonzero terms.

• Line 5 assigns F0,k−l(l) for some 0 ≤ k ≤ A−1 and 0 ≤ l ≤ k. Letting s ≡ k−l ≥ 0 and
a ≡ l we are assigning F0,s(a). We know that a+s = k ≤ A−1 and thus a ≤ A−1−s.
This is the condition for nonzero elements in the first row of F(a) in Theorem 1.

• Line 10 assigns Fm,k−l(l + m]) for some 0 ≤ k ≤ A − 1, 0 ≤ l ≤ min{k,A − 2} and
1 ≤ m ≤ (A− 1)− l. Letting t ≡ m, s ≡ k− l, and a ≡ l+m, we are assigning Ft,s(a).

Since t = m ≥ 1, this is not an element in the first row of the matrix. First, a−t = l ≥ 0
as a condition of line 7. Also, since k ≤ A− 1, A− 1− k + l ≥ l. Therefore,

l ≤ A− 1− (k − l)→ a− t ≤ A− 1− s.

So that, in sum, we have, t ≥ 1 and 0 ≤ a− t ≤ A− 1− s which are the conditions for
a nonzero element below the first row of F(a) in Theorem 1.
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