Discussion of “Firm Heterogeneity, Capital Misallocation, and Optimal Monetary Policy” by González, Nuño, Thaler, Albrizio

Bence Bardóczy

International Research Forum on Monetary Policy, May 2022

The views expressed are my own and do not necessarily reflect those of the Board of Governors of the Federal Reserve System.
• **Starting point**: monetary expansion raises TFP. [Baqaee et al. 2021; Jordà et al. 2020…]

• Propose a specific mechanism in the context of a HANK model.
 • most productive firms are financially constrained
 • loose money enables productive firms to expand

• **Contribution 1**: validate mechanism in Spanish micro data.
 • in companion paper Albrizio, González and Khametshin (2021)

• **Contribution 2**: characterize no-shortcut Ramsey policy.
 • zero inflation is optimal in steady state
 • new time inconsistency problem \Rightarrow gains from commitment
 • divine coincidence holds but requires more aggressive interest rate policy
Discussion

1. Inspecting the mechanism behind endogenous TFP
 - intuition
 - robustness

2. Optimal policy
 - why is full-blown Ramsey hard?
 - context for results

3. Conclusion
Inspecting the mechanism
Inspecting the mechanism

• Key object is the **marginal revenue product of capital** (MRPK).

• RANK benchmark: MRPK equals the rental rate of capital. \(MRPK_t = r^K_t \)

• This HANK: MRPK is heterogeneous across firms.

\[
MRPK_t(z) = \underbrace{z}_{\text{firm-level productivity}} \cdot \underbrace{\varphi_t}_{\text{avg MRPK}}
\]

• \(z \) follows exogenous Markov process

• \(\varphi_t \) is determined in equilibrium exactly as in RANK

• How is market clearing \(r^K_t \) determined in this setup?
The market for capital and TFP

Distribution of firms

- Production capacity is constrained by net worth.
- \(r_K \) falls until enough firms start producing.
- \(MRP_K(t)(z^*) = r_K \) holds only for the marginal firm.

Aggregate TFP = average \(z \) weighted by net worth shares.
The market for capital and TFP

• Production capacity is constrained by net worth

• \(r^K_t \) falls until enough firms start producing
The market for capital and TFP

- production capacity is constrained by net worth
- \(r^K_t \) falls until enough firms start producing
- \(MRPK_t(z^*_t) = r^K_t \) holds only for the marginal firm
- **Aggregate TFP** = average \(z \) weighted by net worth shares
Evolution of net worth shares

- Discrete time law of motion:

\[Q_t a_{it} = \left[\gamma \left(MRPK_t(z_{it}) - r^K_t \right) + r^K_t + (1 - \delta)Q_t \right] a_{it-1} \]

- \(\gamma \) is leverage constraint, \(Q_t \) is capital price, \(\delta \) is depreciation

Recall that marginal revenue product of capital is

\[MRPK_t(z_{it}) = z_{it} \cdot \phi_t \]

Aggregate TFP is endogenous because average MRPK is endogenous.
Evolution of net worth shares

• Discrete time law of motion:

\[Q_t a_{it} = \gamma \left(MRPK_t(z_{it}) - r^K_t \right) + r^K_t + (1 - \delta)Q_t \bigg|_{a_{it-1}} \]

• \(\gamma \) is leverage constraint, \(Q_t \) is capital price, \(\delta \) is depreciation

• Recall that marginal revenue product of capital is

\[MRPK_t(z_{it}) = \frac{z_{it}}{\text{firm-level productivity}} \cdot \frac{\varphi_t}{\text{avg MRPK}} \]

• **Insight**: Aggregate TFP is endogenous bc average MRPK is endogenous.
Monetary policy and MRPK

- Avg MRPK depends on product price and non-capital costs:

\[
\varphi_t = \alpha \left(\frac{1 - \alpha}{w_t} \right)^{\frac{1-\alpha}{\alpha}} m_t^{\frac{1}{\alpha}} \tag{4}
\]
Avg MRPK depends on product price and non-capital costs:

\[\varphi_t = \alpha \left(\frac{1 - \alpha}{w_t} \right)^{\frac{1 - \alpha}{\alpha}} m_t^{\frac{1}{\alpha}} \]

TFP channel is robust feature of any model where monetary easing raises \(\varphi_t \).
Optimal policy
Why is full-blown Ramsey policy so hard in HA models?

- The most powerful HA solution methods proceed in two steps.
 1. deterministic steady state
 2. perturbation around steady state

- Think of this as the Archimedean principle of HA macro.

- Steady state and dynamics are **inseparable** in Ramsey problem.
 → large nonlinear problem
Social utopia and optima

• W is welfare function, θ is policy instrument, X is endogenous variables.

• **Utopian steady state** policy is the **scalar** θ^* that solves

$$\max_{\theta} W(\theta, X) \quad \text{s.t.} \quad H(\theta, X) = 0$$

• **Optimal steady state** policy is the **limit** of $\{\theta_t^*\}$ that solves

$$\max_{\{\theta_t\}_{t \geq 0}} \sum_{t=0}^{\infty} \beta^t W_t(\theta_t, X_t) \quad \text{s.t.} \quad H_t(\theta_t, X_t) = 0 \quad \forall t \geq 0$$

• **Optimal policy response** to shock $\{Z_t\}$ is the **path** $\{\theta_t^*\}$ that solves

$$\max_{\{\theta_t\}_{t \geq 0}} \sum_{t=0}^{\infty} \beta^t W_t(\theta_t, X_t, Z_t) \quad \text{s.t.} \quad H_t(X_t, \theta_t, Z_t) = 0 \quad \forall t \geq 0$$
Optimal policies and how to find them

• This paper does optimal policy—not utopia—in HANK.
 • competitive equilibrium $H_t(X_t, \theta_t, Z_t) = 0$ depends on distribution of net worth shares

• How do they do it?
 • no tricks, very efficient implementation of (6) and (7)
 • continuous time is not black magic: linear interpolation \approx time derivatives
 • curse of dimensionality2: time horizon \times idiosyncratic state space

• Optimal steady state policy is zero inflation.

• Optimal policy response to a discount factor shock $\{Z_t\}_{t\geq0}$ is full price stabilization.
 \rightarrow divine coincidence
Context for heterogeneity and optimal policy

• Considerations for optimal policy. [Dávila and Schaab 2021]

 1. aggregate efficiency
 2. risk sharing (equalize marginal utility across periods and states)
 3. redistribution (equalize marginal utility across households)

• Addressing considerations 2. and 3. requires heterogeneous households.

 • divine coincidence fails generically in richer environments
Conclusion
Conclusion

• Exciting and ambitious paper!
 • brings rich micro data to support an intuitive HA mechanism
 • sophisticated template to compute full-blown Ramsey policy

• Optimal policy $\text{HANK} \approx \text{RANK}$. Not to be taken out of context.
 • no redistributive or risk sharing considerations
 • question: have you looked at asymmetry between positive and negative shocks?

• Follow-up work could refine quantitative predictions.
 • TFP responds much more to monetary policy in models with markup heterogeneity and production networks. [Cienfuegos and Loria 2017; Baqae et al. 2021]
 • is the capital misallocation channel important?
 • heterogeneous returns to scale, depreciation, financial constraints, and endogenous entry/exit could amplify the channel; exploit rich Spanish data to discipline them

